Игры кончились: AlphaGo займется решением реальных мировых проблем

В прошлом месяце человечество проиграло важную битву с искусственным интеллектом — тогда AlphaGo обыграл чемпиона по го Ки Дже со счетом 3:0. AlphaGo — это программа с искусственным интеллектом, разработанная DeepMind, частью родительской компании Google Alphabet. В прошлом году она обыграла другого чемпиона, Ли Седоля, со счетом 4:1, но с тех пор существенно набрала по очкам.

Ки Дже описал AlphaGo как «бога игры в го».

Теперь AlphaGo заканчивает играть в игры, предоставляя возможность игрокам, как и прежде, сражаться между собой. Искусственный интеллект приобрел статус «игрока из далекого будущего», до уровня которого людям придется расти очень долго.

На старт, внимание, го

Го — это древняя игра на двоих, где один играет белыми фигурами, другой черными. Задача — захватить доминацию на доске, разделенной на 19 горизонтальных и 19 вертикальных линий. Компьютерам играть в го сложнее, чем в шахматы, потому что число возможных ходов в каждой позиции намного больше. Это делает просчет возможных ходов наперед — вполне возможный для компьютеров в шахматах — очень сложным в го.

Прорывом DeepMind стала разработка общего алгоритма обучения, который, в принципе, можно направить в более социально ориентированном направлении, чем го. DeepMind говорит, что группа исследователей AlphaGo пытается решить сложные проблемы вроде поиска новых лечений для заболеваний, радикального снижения энергопотребления или разработки новых революционных материалов.

«Если система ИИ доказывает, что способна обретать новое знание и стратегии в этих сферах, прорывы будут просто неописуемы. Не могу дождаться, чтобы увидеть, что будет дальше», говорит один из ученых проекта.

В будущем это грозит множеством захватывающих возможностей, но проблемы пока никуда не делись.

Нейробиология и искусственный интеллект

AlphaGo сочетает две мощных идеи на тему обучения, которые получили развитие за последние несколько десятилетий: глубокое обучение и обучение с подкреплением. Что примечательно, оба направления вышли из биологической концепции работы и обучения мозга в процессе получения опыта.

В мозге человека сенсорная информация обрабатывается в серии слоев. Например, визуальная информация сперва трансформируется в сетчатке, затем в среднем мозге, а затем проходит через различные области коры головного мозга.

В итоге появляется иерархия представений, где сперва идут простые и локализованные детали, а затем более сложные и комплексные особенности.

Эквивалент в ИИ называется глубоким обучением: глубокое, потому что включает множество слоев обработки в простых нейроноподобных вычислительных единицах.

Но чтобы выжить в этом мире, животным необходимо не только распознавать сенсорную информацию, но и действовать в соответствии с ней. Поколения ученых и психологов изучали, как животные учатся предпринимать действия, чтобы максимизировать извлекаемую выгоду и получаемую награду.

Все это привело к математическим теориям обучения с подкреплением, которое теперь можно имплементировать в системы ИИ. Самой важной из них является так называемое TD-обучение, которое улучшает действия за счет максимизации ожидания будущей награды.

Лучшие ходы

Игры кончились: AlphaGo займется решением реальных мировых проблем

За счет сочетания глубокого обучения и обучения с подкреплением в серии искусственных нейронных сетей, AlphaGo сперва научился играть на уровне профессионального игрока в го на основе 30 миллионов ходов из игр между людьми.

Но затем он начал играть против себя, используя исход каждой игры, чтобы неумолимо оттачивать собственные решения о лучшем ходе в каждой позиции на доске. Система ценностей сети научилась прогнозировать вероятный результат с учетом любой позиции, а система благоразумия сети научилась принимать лучшее решение в каждой конкретной ситуации.

Хотя AlphaGo не мог опробовать все возможные позиции на доске, нейронные сети извлекли ключевые идеи о стратегиях, которые хорошо работают в любой позиции. Именно эти бесчисленные часы самостоятельной игры привели к улучшению AlphaGo за последний год.

К сожалению, пока еще нет известного способа выяснить у сети, что это за ключевые идеи. Мы просто можем изучать игры и надеяться, что что-то извлечем из них. Это одна из проблем использования нейронных алгоритмов: они не объясняют свои решения.

Мы по-прежнему мало понимаем о том, как обучаются биологические мозги, а нейробиология продолжает предоставлять новые источники вдохновения для ИИ. Люди могут стать экспертами в игре го, руководствуясь гораздо меньшим опытом, чем нужен AlphaGo для достижения такого уровня, поэтому пространство для улучшения алгоритмов еще есть.

Кроме того, большая часть мощности AlphaGo основана на технике метода обратного распространения ошибки, которая помогает ей исправлять ошибки. Но связь между ней и обучением в реальном мозге пока неясна.

Что дальше?

Игра го стала удобной платформой разработки для оптимизации этих алгоритмов обучения. Но многие проблемы реального мира куда беспорядочнее и имеют меньше возможностей для самообучения (например, самоуправляемые автомобили).

Существуют ли проблемы, к которым мы можем применить имеющиеся алгоритмы?

Одним из примеров может быть оптимизация контролируемых промышленных условий. Здесь задача часто состоит в том, чтобы выполнить сложную серию заданий, удовлетворить множество критериев и минимизировать затраты.

До тех пор, пока условия можно будет точно смоделировать, эти алгоритмы будут учиться и набираться опыта быстрее и эффективнее, чем люди. Можно лишь повторить слова компании DeepMind: очень хочется посмотреть, что же будет дальше.

Источник

Related Articles

Back to top button
Close
analisis mendalam rtp mahjong ways mengapa pola tumble tertentu sering memicu bonus beruntun momentum reel stabil indikator tersembunyi sebelum freespin besar di mahjong wins peta rotasi simbol bagaimana jalur scatter membentuk fase pre ledakan di game modern laporan harian pola spin turbo malam hari yang konsisten mengangkat frekuensi multiplier riset visual efek clean frame dan dense spin terhadap keputusan spin lanjutan pemain mahjong algoritma cerdas spin harian formula baru mengelola budget kecil agar cuan tetap berkelanjutan gold wild dan multiplier kombinasi mekanik yang mengubah probabilitas return realistis pemain jalur logis dari spin biasa ke pre burst studi kasus slide track pada seri mahjong terbaru output tinggi tanpa panik spin strategi mengatur ritme tumble untuk mengurangi dead spin beruntun korelasi jam 20 00 23 00 dengan pola scatter laporan observasi live dari meja mahjong ways era baru pola spin mengapa pemain berpengalaman beralih ke pendekatan probabilitas mikro simulasi ribuan spin data menarik tentang kapan reel konsisten berujung pada freespin premium ritme visual yang menipu bagaimana efek animasi membuat pemain gagal membaca sinyal pre fs dari repair rush ke clean frame perbedaan pola recovery setelah tumble buruk di mahjong ways 2 symbol route mapping teknik memetakan jalur simbol untuk mendeteksi potensi ledakan mendadak performa scatter ganda studi perbandingan antara pola jam pagi dan malam di game high volatility blueprint spin harian kerangka strategis mengatur turbo manual dan auto spin dalam satu sesi frekuensi mini tumble sebagai early warning kapan sebaiknya berhenti dan kapan menunggu fs mahjong 3 0 pergeseran meta dari kejar maxwin ke cuan konsisten berbasis pola data riset lapangan pemain casual seberapa jauh mereka mengikuti sinyal visual dibandingkan data rtp studi komparasi pola tumble mahjong ways menunjukkan anomali positif di server sore analisa fluktuasi scatter mengapa putaran turbo sering memicu fase pre burst riset algoritma korelasi antara simbol naga dan multiplier x10 yang sering terabaikan evaluasi siklus spin menemukan titik jenuh mesin sebelum reset menjadi gacor observasi lapangan pola pecahan emas mahjong ways membentuk tren kenaikan saldo signifikan hipotesis teruji teknik jeda spin ternyata mampu memancing trigger free game lebih cepat laporan teknis stabilitas server jam 21 00 berdampak langsung pada frekuensi wild menumpuk bedah mekanisme bagaimana sistem runtuhan mahjong wins 2 menciptakan momentum kemenangan beruntun arus lalu lintas padat di kota mengingatkan pada ritme cepat spin turbo mahjong ways fenomena langit cerah pasca badai simbolisasi visual saat scatter turun bertubi tubi gelombang laut pasang sore hari memiliki kemiripan pola dengan grafik rtp mahjong ways suara hujan deras di atap seng analogi bunyi koin big win yang dinanti pemain keteraturan barisan semut berjalan filosofi konsistensi bet kecil sebelum ledakan jackpot formula probabilitas mengatur modal minim untuk memancing algoritma pecah di menit awal mekanisme roda gigi jam kuno representasi akurat perputaran reel slot yang presisi rahasia navigasi menu fitur tersembunyi yang kerap digunakan pemain pro untuk reset pola strategi adaptasi cara membaca perubahan pola mahjong ways setelah maintenance rutin kalkulasi resiko menentukan kapan harus berhenti spin saat indikator rungkad mulai muncul optimalisasi akun baru mengapa id fresh sering mendapat prioritas scatter di 100 spin pertama transisi pola mengenali tanda perubahan dari fase sedot menuju fase muntah koin konsistensi reel 3 4 indikator paling stabil sebelum munculnya scatter beruntun riset mikro pattern mengapa mini wild sering menjadi pemicu awal freespin premium analisis slide momentum transisi halus dari tumble biasa ke pre burst di mahjong ways pola jam subuh 03 00 05 00 data menarik mengenai peningkatan frekuensi multiplier ritme spin lambat apakah efeknya benar benar meningkatkan probabilitas bonus fenomena quiet board ketika layar terlihat tenang namun menyimpan potensi tumble besar studi cluster scatter bagaimana 2 scatter bertahan lama sebelum akhirnya meledak jadi 3 korelasi wild bertingkat apakah pola aktivasi bertahap menjadi sinyal pre freespin observasi hari ini slide track berpola zig zag muncul lebih sering di jam malam simulasi 5000 spin pola turbo short burst yang konsisten mendekati fs premium mengurai dead calm fase tenang 10 20 spin yang justru mendahului ledakan bonus mapping rotasi simbol ketika reel atas jadi penentu arah tumble besar pola recovery setelah dead spin mengapa 2 wild awal sering menjadi titik kembali analisis visual efek animasi slow tumble sebagai tanda reel memasuki zona stabil scatter delay pattern ketika scatter muncul terlambat justru meningkatkan peluang fs pre burst marker tanda tanda halus dari pola reel 1 2 sebelum meledak tajam eksperimen spin manual vs auto mana yang lebih konsisten memicu mini tumble berulang laporan estetik clean frame versi putih muncul lebih sering saat rtp stabil jalur simbol menurun apakah ini menjadi fase awal aktivasi multiplier bertingkat rangkaian wild tipis ketika 1 2 wild acak justru menjadi fondasi bonus beruntun