Почему ИИ до сих пор не овладел переводом языков в совершенстве?

В мифе про Вавилонскую башню люди задумали построить башню-город, которая достала бы до небес. И тогда Создатель понял, что ничто больше не будет сдерживать людей и возомнят они о себе невесть что. Тогда Бог создал разные языки, чтобы помешать людям и чтобы они больше не могли с легкостью работать сообща. В наше время, благодаря технологиям, мы ощущаем беспрецедентную связанность. Однако мы все еще живем в тени Вавилонской башни. Язык остается барьером в бизнесе и маркетинге. Несмотря на то, что технологические приспособления могут легко и быстро соединяться, люди из разных частей мира зачастую не могут.

Бюро переводов пытаются успевать: делают презентации, контракты, инструкции по аутсорсингу и рекламные объявления для всех желающих. Некоторые агентства также предлагают так называемую “локализацию”. Например, если компания выходит на рынок в Квебеке, ей нужна реклама на квебекском французском, а не на европейском французском языке. Компании могут серьезно пострадать из-за неправильного перевода.

Глобальные рынки ждут, но языковой перевод силами искусственного интеллекта еще не готов, несмотря на недавние достижения в области обработки естественного языка и анализа настроений. У ИИ по-прежнему возникают трудности с обработкой запросов даже на одном языке, не говоря уж про перевод. В ноябре 2016 года Google добавила нейронную сеть в свой переводчик. Но некоторые ее переводы по-прежнему социально и грамматически странные. Почему?

«К чести Google, компания ввела довольно много улучшений, которые появились почти за одну ночь. Но я не особо их использую. Язык — это трудно», говорит Майкл Хаусман, главный научный сотрудник по научным исследованиям в RapportBoost.AI и преподаватель Singularity University.

Он объясняет, что идеальный сценарий для машинного обучения и искусственного интеллекта будет заключаться в фиксированных правилах и четких критериях успеха или неудачи. Шахматы — очевидный пример, а вместе с ними и го. Компьютер очень быстро овладел этими играми, потому что правила их ясные и четкие, а набор ходов ограничен.

«Язык же — почти прямо противоположный. Не существует четких и выверенных правил. Разговор может идти в бесконечном числе разных направлений. И вам, конечно, нужны также помеченные данные. Вам нужно говорить машине, что она делает правильно, а что нет».

Хаусман отметил, что обозначить в языке информационные ярлыки принципиально сложно. «Два переводчика не могут договориться о правильности перевода», говорит он. «Язык — это Дикий Запад с точки зрения данных».

Технологии Google сейчас способны понимать предложения целиком, не пытаясь переводить отдельные слова. Но глюки все равно случаются. Йорг Майфуд, доцент кафедры испанского языка, специалист по латинской литературе в Университете Джексонвилль объясняет, почему точные переводы пока не даются искусственному интеллекту:

«Проблема в том, что понимать предложение целиком пока недостаточно. Так же, как значение отдельного слова зависит от остальной части предложения (по большей части в английском языке), значение предложения зависит от остальной части параграфа и текста в целом, а значение текста зависит от культуры, намерений говорящего и прочего. Сарказм и ирония, например, имеют смысл только в широком контексте. Идиомы также могут быть проблемными для автоматизированного перевода».

«Перевод Google — отличный инструмент, если вы используете его как инструмент, то есть не пытаясь заменить человеческое обучение или понимание», говорит он. «Несколько месяцев назад я пошел покупать дрель в Home Depot и прочитал надпись под машиной: «Saw machine». (Машинная пила). Ниже был испанский перевод ‘La máquina vió,’ что означает “Машина это видела”. “Saw” перевели не как существительное, а как глагол прошедшего времени».

Доктор Майфуд предостерегает: «Мы должны знать о хрупкости такой интерпретации. Потому что переводить — это по сути интерпретировать, не просто идею, но и чувство. Человеческие чувства и идеи, которые могут понять только люди — а иногда даже мы, люди, не можем понять других людей».

Он отметил, что культура, пол и даже возраст могут создавать препятствия для этого понимания, а чрезмерная зависимость от технологий ведет к нашему культурному и политическому упадку. Доктор Майфуд упомянул, что аргентинский писатель Хулио Кортасар называл словари “кладбищами”. Автоматические переводчики можно было бы назвать “зомби”.

Эрик Камбриа, академик, исследующий ИИ, и профессор Технологического университета Наньянга в Сингапуре, занимается по большей части обработкой естественного языка, которая лежит в основе переводчиков на основе ИИ. Как и доктор Майфуд, он видит сложность и сопряженные риски в этом направлении. «Существует очень много вещей, которые мы делаем несознательно, когда читаем текст». Чтение требует выполнения множества несвязанных задач, которые не под силу автоматическим переводчикам.

«Самая большая проблема машинного перевода на сегодня состоит в том, что мы склонны переходить от синтаксической формы предложения на языке ввода к синтаксической форме этого предложения на целевом языке. Мы, люди, так не делаем. Мы сперва расшифровываем значение предложения на входном языке, а затем кодируем это значение на целевом языке».

Кроме того, существуют культурные риски, связанные с этими переводами. Доктор Рамеш Шринивасан, директор Лаборатории цифровых культур в Калифорнийском университете  в Лос-Анджелесе, говорит, что новые технологические инструменты иногда отражают лежащие в основе предубеждения.

«Должно быть два параметра, которые определяют, как мы проектируем “интеллектуальные системы”. Один — это ценности и, можно так сказать, предубеждения того, кто создает системы. Второе — это мир, в котором система будет учиться. Если вы создаете системы ИИ, которые отражают предубеждения своего создателя и широкого мира, иногда бывают весьма впечатляющие провалы».

Доктор Шриванисан говорит, что инструменты перевода должны быть прозрачными в отношении возможностей и ограничений. «Видите ли, идея того, что одна система может взять языки (которые очень разнообразны семантически и синтаксически) и объединить их или в какой-то мере обобщить, либо вообще сделать одним целым, это нелепо».

Мэри Кокран, кофаундер Launching Labs Marketing, видит коммерческий потенциал роста. Она отметила, что списки на онлайн-рынках вроде Amazon можно в теории автоматически переводить и оптимизировать для покупателей в других странах.

«Я считаю, что мы сейчас коснулись лишь верхушки айсберга, так сказать, касательно того, что ИИ может сделать с маркетингом. И с улучшенным переводом и глобализацией по всему миру ИИ не может не привести к взрывному росту рынка».

Источник

Related Articles

Back to top button
Close
analisis mendalam rtp mahjong ways mengapa pola tumble tertentu sering memicu bonus beruntun momentum reel stabil indikator tersembunyi sebelum freespin besar di mahjong wins peta rotasi simbol bagaimana jalur scatter membentuk fase pre ledakan di game modern laporan harian pola spin turbo malam hari yang konsisten mengangkat frekuensi multiplier riset visual efek clean frame dan dense spin terhadap keputusan spin lanjutan pemain mahjong algoritma cerdas spin harian formula baru mengelola budget kecil agar cuan tetap berkelanjutan gold wild dan multiplier kombinasi mekanik yang mengubah probabilitas return realistis pemain jalur logis dari spin biasa ke pre burst studi kasus slide track pada seri mahjong terbaru output tinggi tanpa panik spin strategi mengatur ritme tumble untuk mengurangi dead spin beruntun korelasi jam 20 00 23 00 dengan pola scatter laporan observasi live dari meja mahjong ways era baru pola spin mengapa pemain berpengalaman beralih ke pendekatan probabilitas mikro simulasi ribuan spin data menarik tentang kapan reel konsisten berujung pada freespin premium ritme visual yang menipu bagaimana efek animasi membuat pemain gagal membaca sinyal pre fs dari repair rush ke clean frame perbedaan pola recovery setelah tumble buruk di mahjong ways 2 symbol route mapping teknik memetakan jalur simbol untuk mendeteksi potensi ledakan mendadak performa scatter ganda studi perbandingan antara pola jam pagi dan malam di game high volatility blueprint spin harian kerangka strategis mengatur turbo manual dan auto spin dalam satu sesi frekuensi mini tumble sebagai early warning kapan sebaiknya berhenti dan kapan menunggu fs mahjong 3 0 pergeseran meta dari kejar maxwin ke cuan konsisten berbasis pola data riset lapangan pemain casual seberapa jauh mereka mengikuti sinyal visual dibandingkan data rtp studi komparasi pola tumble mahjong ways menunjukkan anomali positif di server sore analisa fluktuasi scatter mengapa putaran turbo sering memicu fase pre burst riset algoritma korelasi antara simbol naga dan multiplier x10 yang sering terabaikan evaluasi siklus spin menemukan titik jenuh mesin sebelum reset menjadi gacor observasi lapangan pola pecahan emas mahjong ways membentuk tren kenaikan saldo signifikan hipotesis teruji teknik jeda spin ternyata mampu memancing trigger free game lebih cepat laporan teknis stabilitas server jam 21 00 berdampak langsung pada frekuensi wild menumpuk bedah mekanisme bagaimana sistem runtuhan mahjong wins 2 menciptakan momentum kemenangan beruntun arus lalu lintas padat di kota mengingatkan pada ritme cepat spin turbo mahjong ways fenomena langit cerah pasca badai simbolisasi visual saat scatter turun bertubi tubi gelombang laut pasang sore hari memiliki kemiripan pola dengan grafik rtp mahjong ways suara hujan deras di atap seng analogi bunyi koin big win yang dinanti pemain keteraturan barisan semut berjalan filosofi konsistensi bet kecil sebelum ledakan jackpot formula probabilitas mengatur modal minim untuk memancing algoritma pecah di menit awal mekanisme roda gigi jam kuno representasi akurat perputaran reel slot yang presisi rahasia navigasi menu fitur tersembunyi yang kerap digunakan pemain pro untuk reset pola strategi adaptasi cara membaca perubahan pola mahjong ways setelah maintenance rutin kalkulasi resiko menentukan kapan harus berhenti spin saat indikator rungkad mulai muncul optimalisasi akun baru mengapa id fresh sering mendapat prioritas scatter di 100 spin pertama transisi pola mengenali tanda perubahan dari fase sedot menuju fase muntah koin konsistensi reel 3 4 indikator paling stabil sebelum munculnya scatter beruntun riset mikro pattern mengapa mini wild sering menjadi pemicu awal freespin premium analisis slide momentum transisi halus dari tumble biasa ke pre burst di mahjong ways pola jam subuh 03 00 05 00 data menarik mengenai peningkatan frekuensi multiplier ritme spin lambat apakah efeknya benar benar meningkatkan probabilitas bonus fenomena quiet board ketika layar terlihat tenang namun menyimpan potensi tumble besar studi cluster scatter bagaimana 2 scatter bertahan lama sebelum akhirnya meledak jadi 3 korelasi wild bertingkat apakah pola aktivasi bertahap menjadi sinyal pre freespin observasi hari ini slide track berpola zig zag muncul lebih sering di jam malam simulasi 5000 spin pola turbo short burst yang konsisten mendekati fs premium mengurai dead calm fase tenang 10 20 spin yang justru mendahului ledakan bonus mapping rotasi simbol ketika reel atas jadi penentu arah tumble besar pola recovery setelah dead spin mengapa 2 wild awal sering menjadi titik kembali analisis visual efek animasi slow tumble sebagai tanda reel memasuki zona stabil scatter delay pattern ketika scatter muncul terlambat justru meningkatkan peluang fs pre burst marker tanda tanda halus dari pola reel 1 2 sebelum meledak tajam eksperimen spin manual vs auto mana yang lebih konsisten memicu mini tumble berulang laporan estetik clean frame versi putih muncul lebih sering saat rtp stabil jalur simbol menurun apakah ini menjadi fase awal aktivasi multiplier bertingkat rangkaian wild tipis ketika 1 2 wild acak justru menjadi fondasi bonus beruntun